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at a fixed frequency, is

(15.2)i = I0 sin ωt,

where i is the current at time t and I0 is the peak current and is equal to V0/R . For this example, the voltage and current

are said to be in phase, meaning that their sinusoidal functional forms have peaks, troughs, and nodes in the same place.
They oscillate in sync with each other, as shown in Figure 15.2(b). In these equations, and throughout this chapter, we use
lowercase letters (such as i) to indicate instantaneous values and capital letters (such as I) to indicate maximum, or peak,
values.

Figure 15.3 The potential difference V between the terminals
of an ac voltage source fluctuates, so the source and the resistor
have ac sine waves on top of each other. The mathematical
expression for v is given by v = V0 sin ωt.

Current in the resistor alternates back and forth just like the driving voltage, since I = V /R . If the resistor is a fluorescent

light bulb, for example, it brightens and dims 120 times per second as the current repeatedly goes through zero. A 120-Hz
flicker is too rapid for your eyes to detect, but if you wave your hand back and forth between your face and a fluorescent
light, you will see the stroboscopic effect of ac.

Check Your Understanding If a European ac voltage source is considered, what is the time difference
between the zero crossings on an ac voltage-versus-time graph?

15.2 | Simple AC Circuits

Learning Objectives

By the end of the section, you will be able to:

• Interpret phasor diagrams and apply them to ac circuits with resistors, capacitors, and inductors

• Define the reactance for a resistor, capacitor, and inductor to help understand how current in
the circuit behaves compared to each of these devices

In this section, we study simple models of ac voltage sources connected to three circuit components: (1) a resistor, (2) a
capacitor, and (3) an inductor. The power furnished by an ac voltage source has an emf given by

v(t) = V0 sin ωt,

as shown in Figure 15.4. This sine function assumes we start recording the voltage when it is v = 0 V at a time of

t = 0 s. A phase constant may be involved that shifts the function when we start measuring voltages, similar to the phase
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constant in the waves we studied in Waves (http://cnx.org/content/m58367/latest/) . However, because we are free
to choose when we start examining the voltage, we can ignore this phase constant for now. We can measure this voltage
across the circuit components using one of two methods: (1) a quantitative approach based on our knowledge of circuits, or
(2) a graphical approach that is explained in the coming sections.

Figure 15.4 (a) The output v(t) = V0 sin ωt of an ac generator. (b) Symbol used to represent an ac voltage source in a

circuit diagram.

Resistor
First, consider a resistor connected across an ac voltage source. From Kirchhoff’s loop rule, the instantaneous voltage across
the resistor of Figure 15.5(a) is

vR(t) = V0 sin ωt

and the instantaneous current through the resistor is

iR(t) = vR(t)
R = V0

R sin ωt = I0 sin ωt.

Figure 15.5 (a) A resistor connected across an ac voltage source. (b) The current iR (t) through the resistor and the

voltage vR (t) across the resistor. The two quantities are in phase.
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Here, I0 = V0/R is the amplitude of the time-varying current. Plots of iR (t) and vR (t) are shown in Figure 15.5(b).

Both curves reach their maxima and minima at the same times, that is, the current through and the voltage across the resistor
are in phase.

Graphical representations of the phase relationships between current and voltage are often useful in the analysis of ac
circuits. Such representations are called phasor diagrams. The phasor diagram for iR (t) is shown in Figure 15.6(a), with

the current on the vertical axis. The arrow (or phasor) is rotating counterclockwise at a constant angular frequency ω, so

we are viewing it at one instant in time. If the length of the arrow corresponds to the current amplitude I0, the projection

of the rotating arrow onto the vertical axis is iR(t) = I0 sin ωt, which is the instantaneous current.

Figure 15.6 (a) The phasor diagram representing the current through the resistor of Figure 15.5. (b) The
phasor diagram representing both iR (t) and vR (t) .

The vertical axis on a phasor diagram could be either the voltage or the current, depending on the phasor that is being
examined. In addition, several quantities can be depicted on the same phasor diagram. For example, both the current iR (t)
and the voltage vR (t) are shown in the diagram of Figure 15.6(b). Since they have the same frequency and are in phase,

their phasors point in the same direction and rotate together. The relative lengths of the two phasors are arbitrary because
they represent different quantities; however, the ratio of the lengths of the two phasors can be represented by the resistance,
since one is a voltage phasor and the other is a current phasor.

Capacitor
Now let’s consider a capacitor connected across an ac voltage source. From Kirchhoff’s loop rule, the instantaneous voltage
across the capacitor of Figure 15.7(a) is

vC(t) = V0 sin ωt.

Recall that the charge in a capacitor is given by Q = CV . This is true at any time measured in the ac cycle of voltage.

Consequently, the instantaneous charge on the capacitor is

q(t) = CvC(t) = CV0 sin ωt.

Since the current in the circuit is the rate at which charge enters (or leaves) the capacitor,

iC(t) = dq(t)
dt = ωCV0 cos ωt = I0 cos ωt,

where I0 = ωCV0 is the current amplitude. Using the trigonometric relationship cos ωt = sin (ωt + π/2), we may

express the instantaneous current as

iC(t) = I0 sin ⎛
⎝ωt + π

2
⎞
⎠.

Dividing V0 by I0 , we obtain an equation that looks similar to Ohm’s law:
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(15.3)V0
I0

= 1
ωC = XC.

The quantity XC is analogous to resistance in a dc circuit in the sense that both quantities are a ratio of a voltage to a

current. As a result, they have the same unit, the ohm. Keep in mind, however, that a capacitor stores and discharges electric
energy, whereas a resistor dissipates it. The quantity XC is known as the capacitive reactance of the capacitor, or the

opposition of a capacitor to a change in current. It depends inversely on the frequency of the ac source—high frequency
leads to low capacitive reactance.

Figure 15.7 (a) A capacitor connected across an ac generator. (b) The current iC (t) through the capacitor and the voltage

vC (t) across the capacitor. Notice that iC (t) leads vC (t) by π/2 rad.

A comparison of the expressions for vC (t) and iC (t) shows that there is a phase difference of π/2 rad between them.

When these two quantities are plotted together, the current peaks a quarter cycle (or π/2 rad ) ahead of the voltage, as

illustrated in Figure 15.7(b). The current through a capacitor leads the voltage across a capacitor by π/2 rad, or a quarter

of a cycle.

The corresponding phasor diagram is shown in Figure 15.8. Here, the relationship between iC (t) and vC (t) is

represented by having their phasors rotate at the same angular frequency, with the current phasor leading by π/2 rad.

Figure 15.8 The phasor diagram for the capacitor of Figure
15.7. The current phasor leads the voltage phasor by π/2 rad as

they both rotate with the same angular frequency.

To this point, we have exclusively been using peak values of the current or voltage in our discussion, namely, I0 and

V0. However, if we average out the values of current or voltage, these values are zero. Therefore, we often use a second

convention called the root mean square value, or rms value, in discussions of current and voltage. The rms operates in
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reverse of the terminology. First, you square the function, next, you take the mean, and then, you find the square root. As a
result, the rms values of current and voltage are not zero. Appliances and devices are commonly quoted with rms values for
their operations, rather than peak values. We indicate rms values with a subscript attached to a capital letter (such as Irms ).

Although a capacitor is basically an open circuit, an rms current, or the root mean square of the current, appears in a circuit
with an ac voltage applied to a capacitor. Consider that

(15.4)Irms = I0
2

,

where I0 is the peak current in an ac system. The rms voltage, or the root mean square of the voltage, is

(15.5)Vrms = V0
2

,

where V0 is the peak voltage in an ac system. The rms current appears because the voltage is continually reversing,

charging, and discharging the capacitor. If the frequency goes to zero, which would be a dc voltage, XC tends to infinity,

and the current is zero once the capacitor is charged. At very high frequencies, the capacitor’s reactance tends to zero—it
has a negligible reactance and does not impede the current (it acts like a simple wire).

Inductor
Lastly, let’s consider an inductor connected to an ac voltage source. From Kirchhoff’s loop rule, the voltage across the
inductor L of Figure 15.9(a) is

(15.6)vL (t) = V0 sin ωt.

The emf across an inductor is equal to ε = −L⎛
⎝diL/dt⎞

⎠; however, the potential difference across the inductor is

vL (t) = LdiL (t)/dt , because if we consider that the voltage around the loop must equal zero, the voltage gained from the

ac source must dissipate through the inductor. Therefore, connecting this with the ac voltage source, we have

diL (t)
dt = V0

L sin ωt.

Figure 15.9 (a) An inductor connected across an ac generator. (b) The current iL (t) through the inductor and the voltage

vL (t) across the inductor. Here iL (t) lags vL (t) by π/2 rad.

The current iL (t) is found by integrating this equation. Since the circuit does not contain a source of constant emf, there
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is no steady current in the circuit. Hence, we can set the constant of integration, which represents the steady current in the
circuit, equal to zero, and we have

(15.7)iL (t) = − V0
ωLcos ωt = V0

ωL sin ⎛
⎝ωt − π

2
⎞
⎠ = I0 sin ⎛

⎝ωt − π
2

⎞
⎠,

where I0 = V0/ωL. The relationship between V0 and I0 may also be written in a form analogous to Ohm’s law:

(15.8)V0
I0

= ωL = XL.

The quantity XL is known as the inductive reactance of the inductor, or the opposition of an inductor to a change in

current; its unit is also the ohm. Note that XL varies directly as the frequency of the ac source—high frequency causes high

inductive reactance.

A phase difference of π/2 rad occurs between the current through and the voltage across the inductor. From Equation

15.6 and Equation 15.7, the current through an inductor lags the potential difference across an inductor by π/2 rad , or a

quarter of a cycle. The phasor diagram for this case is shown in Figure 15.10.

Figure 15.10 The phasor diagram for the inductor of Figure
15.9. The current phasor lags the voltage phasor by π/2 rad as

they both rotate with the same angular frequency.

An animation from the University of New South Wales AC Circuits (https://openstaxcollege.org/l/
21accircuits) illustrates some of the concepts we discuss in this chapter. They also include wave and phasor
diagrams that evolve over time so that you can get a better picture of how each changes over time.
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Example 15.1

Simple AC Circuits

An ac generator produces an emf of amplitude 10 V at a frequency f = 60 Hz. Determine the voltages across

and the currents through the circuit elements when the generator is connected to (a) a 100 - Ω resistor, (b) a

10 - µF capacitor, and (c) a 15-mH inductor.

Strategy

The entire AC voltage across each device is the same as the source voltage. We can find the currents by finding
the reactance X of each device and solving for the peak current using I0 = V0/X.

Solution

The voltage across the terminals of the source is

v(t) = V0 sin ωt = (10 V) sin 120πt,

where ω = 2π f = 120π rad/s is the angular frequency. Since v(t) is also the voltage across each of the elements,

we have

v(t) = vR(t) = vC(t) = vL(t) = (10 V) sin 120πt.

a. When R = 100 Ω, the amplitude of the current through the resistor is

I0 = V0/R = 10 V/100 Ω = 0.10 A,

so

iR(t) = (0.10 A) sin 120πt.

b. From Equation 15.3, the capacitive reactance is

XC = 1
ωC = 1

(120π rad/s)(10 × 10−6 F)
= 265 Ω,

so the maximum value of the current is

I0 = V0
XC

= 10 V
265 Ω = 3.8 × 10−2 A

and the instantaneous current is given by

iC(t) = (3.8 × 10−2 A) sin ⎛
⎝120πt + π

2
⎞
⎠.

c. From Equation 15.8, the inductive reactance is

XL = ωL = (120π rad/s)(15 × 10−3 H) = 5.7 Ω.

The maximum current is therefore

I0 = 10 V
5.7 Ω = 1.8 A

and the instantaneous current is

iL (t) = (1.8 A) sin ⎛
⎝120πt − π

2
⎞
⎠.

Significance

Although the voltage across each device is the same, the peak current has different values, depending on the
reactance. The reactance for each device depends on the values of resistance, capacitance, or inductance.
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15.2 Check Your Understanding Repeat Example 15.1 for an ac source of amplitude 20 V and frequency
100 Hz.

15.3 | RLC Series Circuits with AC

Learning Objectives

By the end of the section, you will be able to:

• Describe how the current varies in a resistor, a capacitor, and an inductor while in series with
an ac power source

• Use phasors to understand the phase angle of a resistor, capacitor, and inductor ac circuit and
to understand what that phase angle means

• Calculate the impedance of a circuit

The ac circuit shown in Figure 15.11, called an RLC series circuit, is a series combination of a resistor, capacitor, and
inductor connected across an ac source. It produces an emf of

v(t) = V0 sin ωt.

Figure 15.11 (a) An RLC series circuit. (b) A comparison of the generator output voltage and the current. The value of the
phase difference ϕ depends on the values of R, C, and L.

Since the elements are in series, the same current flows through each element at all points in time. The relative phase
between the current and the emf is not obvious when all three elements are present. Consequently, we represent the current
by the general expression

i(t) = I0 sin (ωt − ϕ),

where I0 is the current amplitude and ϕ is the phase angle between the current and the applied voltage. The phase angle is

thus the amount by which the voltage and current are out of phase with each other in a circuit. Our task is to find I0 and ϕ.

A phasor diagram involving i(t), vR(t), vC(t), and vL(t) is helpful for analyzing the circuit. As shown in Figure 15.12,

the phasor representing vR(t) points in the same direction as the phasor for i(t); its amplitude is VR = I0 R. The vC(t)
phasor lags the i(t) phasor by π/2 rad and has the amplitude VC = I0 XC. The phasor for vL(t) leads the i(t) phasor by

π/2 rad and has the amplitude VL = I0 XL.
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